pregnancy

AIRCRAFT BASIC CONSTRUCTION

AIRCRAFT BASIC CONSTRUCTION


        INTRODUCTION  :

                    Naval aircraft are built to meet certain specified requirements. These requirements must be selected so they can be built into one aircraft. It is not possible for one aircraft to possess all characteristics; just as it isn't possible for an aircraft to have the comfort of a passenger transport and the maneuverability of a fighter. The type and class of the aircraft determine how strong it must be built.
          A Navy fighter must be fast, maneuverable, and equipped for attack and defense. To meet these requirements, the aircraft is highly powered and has a very strong structure. The airframe of a fixed-wing aircraft consists of the following five major units:
 1. Fuselage 
 2. Wings
 3. Stabilizers
 4. Flight controls surfaces
 5. Landing gear A rotary-wing aircraft consists of the following four major units:
       1. Fuselage
       2. Landing gear 
       3. Main rotor assembly
       4. Tail rotor assembly You need to be familiar with the terms used for aircraft construction               to  work in an aviation rating.


          STRUCTURAL STRESS LEARNING OBJECTIVE:
                
                 Identify the five basic stresses acting on an aircraft. The primary factors to consider in aircraft structures are strength, weight, and reliability. These factors determine the requirements to be met by any material used to construct or repair the aircraft. Airframes must be strong and light in weight. An aircraft built so heavy that it couldn't support more than a few hundred pounds of additional weight would be useless. All materials used to construct an aircraft must be reliable. Reliability minimizes the possibility of dangerous and unexpected failures. Many forces and structural stresses act on an aircraft when it is flying and when it is static. When it is static, the force of gravity produces weight, which is supported by the landing gear. The landing gear absorbs the forces imposed on the aircraft by takeoffs and landings. During flight, any maneuver that causes acceleration or deceleration increases the forces and stresses on the wings and fuselage. Stresses on the wings, fuselage, and landing gear of aircraft are tension, compression, shear, bending, and torsion. These stresses are absorbed by each component of the wing structure and transmitted to the fuselage structure. The empennage (tail section) absorbs the same stresses and transmits them to the fuselage. These stresses are known as loads, and the study of loads is called a stress analysis. Stresses are analyzed and considered when an aircraft is designed.
             
          METALLIC MATERIALS:

           The most common metals used in aircraft construction are aluminum, magnesium, titanium, steel, and their alloys.
      
           1/  Alloys:

             An alloy is composed of two or more metals. The metal present in the alloy in the largest amount is called the base metal. All other metals added to the base metal are called alloying elements. Adding the alloying elements may result in a change in the properties of the base metal. For example, pure aluminum is relatively soft and weak. However, adding small amounts or copper, manganese, and magnesium will increase aluminum's strength many times. Heat treatment can increase or decrease an alloy's strength and hardness. Alloys are important to the aircraft industry. They provide materials with properties that pure metals do not possess.
            
           2/  Aluminum:

                    Aluminum alloys are widely used in modern aircraft construction. Aluminum alloys are valuable because they have a high strength-to-weight ratio. Aluminum alloys are corrosion resistant and comparatively easy to fabricate. The outstanding characteristic of aluminum is its lightweight.

        3/   Magnesium :

                   Magnesium is the world's lightest structural metal. It is a silvery-white material that weighs two-thirds as much as aluminum. Magnesium is used to make helicopters. Magnesium's low resistance to corrosion has limited its use in conventional aircraft.
     
           4/ Titanium :

                 Titanium is a lightweight, strong, corrosionresistant metal. Recent developments make titanium ideal for applications where aluminum alloys are too weak and stainless steel is too heavy. Additionally, titanium is unaffected by long exposure to seawater and marine atmosphere.
شكرا لتعليقك